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COMMENT 

Percolation in a system of randomly distributed sticks 
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L D Landau Institute for Theoretical Physics, USSR Academy of Sciences, Moscow, USSR 

Received 26 April 1988 

Abstract. Arguments are given that a full description of any realistic model of randomly 
distributed conducting sticks in an insulating matrix must incorporate the history of system 
preparation. Different regimes of composite formation produce different dependences of 
the percolation threshold value on the width-to-length ratio E :  p c -  E' ,  pc-  E '  or even 
p c  - € 2 .  

The electrical properties of composites with conducting (or superconducting) fibres 
embedded in an insulating matrix are usually interpreted in terms of percolation theory. 
This approach permits us to evaluate the threshold concentration and to predict the 
critical behaviour and crossover effects. The prediction of the percolation threshold 
concentration pc is the most important problem from a practical point of view. On 
the other hand, this problem is the most difficult one. The above calculation of pc 
demands the complete knowledge of microscopic structure and properties, which is 
often unattainable. Therefore analytical and Monte Carlo calculations [ 1-61 were 
aimed at determining the dependence of pc on the width-to-length ratio E. In the limit 
of small E this dependence is found to be a linear one: 

Pc"(l/V)E. (1) 

Here Y is the volume of a stick of length 1 and width d :  U = d21 and the width-to-length 
ratio E = d / l  lies in the range 10-1-10-3. The estimation (1) is valid for a system of 
permeable sticks randomly distributed in an insulating media. Two sticks are assumed 
to be connected in this model if they intersect with each other. 

If we consider the problem of absolutely rigid impenetrable sticks, their random 
distribution can be realised in different ways. For example, one could place sticks 
randomly without intersections with the previously placed sticks. In this case, at a 
concentration of the order of p = (1/ U)& there will be no free space for any new stick. 
Nevertheless the sticks will be disconnected from each other. The point is that, in the 
case of hard inpenetrable sticks, the contact occurs only if the distance between the 
surfaces of the sticks is exactly zero, and this event has zero probability. 

Another possibility is to thermalise the system after addition of each stick and to 
place new sticks in the casually formed cavities. In this case, at p = (1/ U)& the nematic 
alignment of sticks becomes thermodynamically favoured and the process of addition 
of new sticks can be continued till p i= l/u. The percolation transition takes place in 
this model only in the dense packing limit: 

pc = 1/ U. (2) 
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One might think that the only way to make the model more realistic is to introduce 
a finite interaction length between the sticks. Indeed, this can be caused by finite 
conductance of the insulating matrix, by its electric breakdown, by finite rigidity of 
the sticks, inclusions, roughness of the surface of the sticks, etc. The ‘hard core and  
permeable shell’ model is free from the above peculiarities and  is often used in 
explanations of experimental results. 

The purpose of this comment is to point out that the ‘thermodynamical’ approach 
to the configurational statistics of sticks has a very restricted (if  any at all) field of 
application. 

The sticks are macroscopical objects and they cannot be thermalised via the 
processes of Brownian diffusion, if the processes of sedimentation or flocculation are 
present. For example, let us consider the case of a homogeneous suspension of depth 
5 mm of fibres with typical size 1 = 1 mm, d = 10 p m  [7 ,8] .  Using the barometric 
formula it can easily be estimated that the density of the medium must be tuned to 
the density of the fibre to an  accuracy of Thus any homogeneous system can be 
prepared only using external macroscopic intermixing. We shall show below that, 
during the intermixing, the sticks interact with each other and this determines the 
connectivity properties of the system. It is interesting to note that the finite interaction 
length, which is very important in the thermodynamical model, does not affect the 
percolation threshold criteria in the case of the intermixing system. 

For educational purposes we shall start with some idealised procedure of addition 
of new sticks in a system. The new stick cannot simply appear in an unoccupied space; 
it must somehow be transported to that place. During this transportation it slides 
against other sticks, pushes them apart, sticks to them, carries them along, etc. If the 
transported stick comes into contact with another stick, this contact is retained during 
the displacement of the first stick along the length of order 1. There are two possible 
regimes of transportation. 

( a )  The stick is transported linearly with random orientation (figure l ( a ) ) .  During 
this motion it intersects most of the sticks centred in a tube of cross section =12  along 
its line of motion. If the stick stops, the mean number of contacts with neighbouring 
sticks will be of the order of pi’ .  The percolation transition will take place at p13= 1 
with pc independent of the thickness of the sticks: 

(3 1 pc = 1/i3 = (1/ U)€’. 

( b )  The sticks move, aligned in the direction of motion (figure l ( b ) ) .  In this case 
the number of contacts reduces by a factor of d / l  and we get for the threshold 
concentration the soft core estimation (1). 

Both cases ( a )  and ( b )  look rather artificial but it is easy to connect them with the 
processes during mechanical intermixing of the system. 

First, we consider a case of homogeneous large-scale intermixing of the viscous 
fluid with sticks immersed in it. The motion of the fluid on small scales can be 
represented as a shear flow (figure 2 ) .  If the inertial forces are negligible the stick is 
carried along with a flow and rotates in it. It is clear from figure 2 that the relative 
movement of the stick and  medium is longitudinal (shown by the heavy arrow) and  
if  there are other sticks in the flow their relative movement can be described by figure 
l ( b ) .  The percolation threshold in such a system occurs at a concentration given by 
( 1 ) .  If the intermixing is strongly inhomogeneous, with the scale of inhomogeneity of 
the order of 1 or  smaller, then for each stick there is no possibility of joining up  the 
flow as in the previous case. There will always exist some transverse relative motion 
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( a )  i b )  

Figure 1. Two idealised ways of addition of a new stick (shown b j  a heavy line) in a 
system. The finite position of a stick is shown by a dotted line. ( a )  Stick is transported 
witb random orientation. ( h i  Direction of a stick coincides with the direction of its motion. 

c- 

Figure 2. The  motion of a stick trapped in a shear flow. The relative longitudinal movement 
of a stick and  the medium is shown by a heavy arrow. I f  there are  other sticks in the flow, 
the interaction with them will be as in figure l ( b ) .  

of the stick and medium and the considered stick will hit other sticks trapped in the 
flow. The intersection with other sticks in the flow is then described by the situation 
in figure l ( a ) .  The threshold concentration of sticks is given by (3). In the intermediate 
case of the scale of inhomogeneity of the flow L larger than 1, the ratio between average 
transverse and  longitudinal velocities of the stick and medium is of the order ( l /  L)' 
and the threshold concentration is given by 

p c = -  & -  - f) '  (7")& 
U 

(4) 

After intermixing, the resulting configuration of sticks is usually frozen by cooling 
or by chemical processes. If  this process is not rapid enough, the contacts which were 
formed during intermixing can be broken by Brownian diffusion of the sticks. At this 
point we must recall that there is a finite interaction length A which determines the 
decay time for contacts formed during intermixing: 

( 5 )  

where D is the transverse diffusion coefficient of a long stick D = k T /  71 and is the 
viscosity. In the case of the time-dependent viscosity coefficient (5)  will be somewhat 

T~ = D-',+' 
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more complicated. This process of decay of contacts after intermixing can, in principle, 
be observed through the electrical DC and AC measurements of the conductivity of the 
system. 
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